Arithmetic Logic Unit (ALU 9+8 bit)

The sequence control is done according to the right bit of ARL (result low byte) and the extra bit ALx.

>> The result line (result) ALR ARL ALx is shifted 1 bit to the right, the auxiliary bit is dropped out. On the left, the bit identical to the one shifted away is added as a sign extension.

```
ARL ALx short form Meaning
...0 0 >> (shift only) shift >>
...0 1 add >> factor is added, then >>
...1 0 sub >> -factor is added, then >>
...1 1 >> (shift only) shift >>
ALR is copied to AL1 as a subtotal.
```

The multiplication algorithm (according to Booth, for signed factors)

```
// factor for addition
set ALBA factor 1
                  // -faktor (to calculate in advance, two's complement for subtraction)
set ALBS -factor 1
set ALR 000000000
                  // 9 bit: initial value for continuous summation
                 // set 8 bits into the result low byte
set ARI, factor 2
                     // 1 extra bit (initial value 0)
set ALx 0
//-----
loop 8
                      // loop through 8 times
                 // right bit of ARL
  b1 = right(ARL)
                    // extra bit
  b2 = get(ALx)
  if b1=b2
                     // 0 0 and 1 1
    shift >>
                    // shift right only
  else
    if b1=0 ∧ b2=1
     set AL2 ALBA
                  // set factor 1 for addition of ALBA in AL2
    endif
    if b1=1 \land b2=0
     set AL2 ALBS
                  // set -factor 1 for addition of ALBS in AL2
    endif
    set AL1 ALR
                     // transfer current total to AL1
     // Perform addition in the ALU, the sign bit of AL2 is duplicated in advance.
     add // <-- addition algorithm add ALU 9 (AL1+AL2) in 9 bit arithmetic unit with sign extension
     shift >>
                      // shift right
  endif
end loop
                      // end of loop
```

If the number range -128..127 is not exceeded, the 8 bit product is in the low byte ARL.