binary multiplication - according to Booth

Arithmetic Logic Unit (ALU 9+8 bit)

cpusimulation

bit 1 bit
sign extension 123456789
operand 1 ALl 000000000 00000000 ALBA Factor for addition
operand 1 AL2 000000000 00000000 ALBS Factor for subtraction
carryover ALC 000000000
result ALR 000000000 00000000 0 ALx extra eit
1+8 bit ARL 8 bit
result: High Byte Low Byte

The sequence control is done according to the right bit of ARL (result low byte)

and the extra bit ALx.

>> The result line (result) ALR ARL ALx is shifted 1 bit to the right, the auxiliary bit is dropped out.
On the left, the bit identical to the one shifted away is added as a sign extension.

ARL ALx short form Meaning

..00 >> (shift only) shift >>

..0 1 add >> factor is added, then >>
..1 0 sub >> -factor is added, then >>
.11 >> (shift only) shift >>

ALR is copied to ALl as a subtotal.

The multiplication algorithm (according to Booth, for signed factors)

set ALBA factor 1 // factor for addition
set ALBS -factor 1 // -faktor (to calculate in advance, two's complement for subtraction)
set ALR 000000000 // 9 bit: initial value for continuous summation
set ARL factor 2 // set 8 bits into the result low byte
set ALx O // 1 extra bit (initial value 0)
/m oo
loop 8 // loop through 8 times
bl = right (ARL) // right bit of ARL
b2 = get (ALx) // extra bit
if bl=b2 // 00 and 1 1
shift >> // shift right only
else
if bl=0 A b2=1
set AL2 ALBA // set factor 1 for addition of ALBA in AL2
endif
if bl=1 A b2=0
set AL2 ALBS // set -factor 1 for addition of ALBS in AL2
endif
set ALl ALR // transfer current total to ALl
// Perform addition in the ALU, the sign bit of AL2 is duplicated in advance.
//
add // <-- addition algorithm add ALU_9 (AL1+AL2) in 9 bit arithmetic unit with sign extension
//
shift >> // shift right
endif
end loop // end of loop

If the number range -128..127 is not exceeded, the 8 bit product is in the low byte ARL.

multiplication algorithm page 1 von 1



