Processor HC680 riciive
documentation of simulation

pictures Windows variant
The simulation includes the structure and functionality of the processor and important assemblies
of the system. Thereby both the execution of the machine program and its creation by the assemb-
ler are realized in a simulation window. Assembler programs can be stored and loaded.

data of the system

processor: HC 680 fictive
processing width: 8 bit data and addresses
command length: 1 byte

address range:
clock pulse:
registers:

flags:

arithmetic unit;

numberspace:
graphic:

in and output:
files:
breakpoints:
debug:
assembler:

256 byte

Clock: single step, 0.1Hz to 255Hz, unbraked

4 general registers with shadow register, start address (ST)

instruction register (IR), instruction counter (IC), status register (SR),

stack pointer (SP)

Negative (N), Zero (Z), oVerflow (V), Carry (C) and 1/0 Bits

Arithmetic Logic Unit (ALU), 8+1 bit sign extension for addition,
multiplication by Booth, division with remainder, ALU bitwise representable
decimal from -128 to 127

8x8 maxi pixel display, 8 byte shared memory

by 1/0 bits: keyboard characters, decimal, hexadecimal, - output also binary
by 1/0 bits: keyboard characters, decimal, hexadecimal, binary

3 - changeable during program execution

any section, into selectable file

40 mnemonics, 57 commands by addressing modes - see manual

The user assistance is realized via extensive, tooltips (can be switched off in Windows variant).

System Input

MGA-Display Output I/O-Protocol [

quick gujde | |/O-
L i

Inuit- ARSI

i 1 Mudot AL ™y

documentation of simulation

Cuick Reference Guide:

Please note the tocltips for the essential elements.

Create an assembler/machine program by selecting the mnemonics and operands,

s Ts s i e

Invalid assembler commands are converted to MOP (D0000000).

Store the empty RAM as assembler and open the file to recognize the structure,

Assembler files can be created and edited with a text editor,

Omissions are possible for easier notation. For details see loading tooltip..

Load one or more assembler sequences respecting the memaory addresses,

Although the representation of RAM is designed for assembler instructions only up to line 127,
a machine program will be executed even beyond that!

The RAM rows starting from 128 are conceptually for data, the stack, the keyboard- and mouse buffer
and the Micro-Graphic-Adapter (MGA display 8x8 'maxi’ pixels).

If the program runs into this area, however, the bytes are interpreted as machine commands!
Likewise, data can be written and executed in the range up to line 127.

However, R&M rows 0 and 128 are reconstructed from the edit in the assembler area

after manipulation at program stop.

[Start the machine program with the green start button,

Do not click on the input field that appears when the program is run, see the tool tip,

The byte with the address hF6 serves as keyboard buffer. It is filled in every clock pulse and enables

even elementary event-driven GUI programs with the Micro-Graphic-Adapter.

In the RAM byte hFT the MGA status is stored: | black: 1| row: bbb | click: 1| colummn: bbb |

1.e, left bit set: black, three bit: row, 1 bit: click = 1, three bit: column.

The content of byte hFT is evaluated by the system in each clock cycle, the addressed pixel is set/deleted,
For programs that respond to keyboard and/or mouse events, experimentally determine the clock range.

For multiplication and division, additional ALU registers and buttons are displayed. See tocltips for more information.

Please also refer to the simulation documentation and the HC680 manual.

processor HC680 page 1 of 6

Overall view, example recursive quicksort of the file erman patey input.hcx, output to output.hcx.

Random Access Memory - 256 Byte RAM quick guide | |/O-System Input MGA-Display Output = UO—W
Adress hex Content Command/Value FLAG * HC680 Input: ANSI Output: ANSI

00011010 1A 01011010 DEC .AQ. N € binary code Datei Bearber
00011011 1B 00101001 PSH .D1. N Hiffe
00011100 1C 00110001 SSR .DI. N X/STOP | fig [inputhcx |in - Out[outputhex | 99
00011101 1D 11010101 Mov .pl. [D1] TR iy = ; _ 4 12
00011110 1E 00101001 PSH .DL. o L F'B}:teasrseori;zﬁsﬂ — r[llaF'il;t—e?entral Processing Unit)
00011111 1F 00000000 NOP ‘M0.6 e ||D0 9 sgn

00100000 20 00010011 LDC .Al. N E) = 00000011 10000001 i 9
00100001 21 11111101 ## 1111 1101 z _ Avithmetic Logic Unit 5
00100010 22 01010110 INC .AQ. N - Breakpoints | D1 SD1 _122
00100011 23 11010010 MOV .DO. [AO] ghorrenn | IOOTTRN \ oenoTieg 0
00100100 24 00000001 CMP C [] i 111111111

00100101 25 00001001 IJIN .+A. Fdesstemstar 111111000 2

SAQ LR

00100110 26 11100010 MoV .DO. .AD. N T 10001011 00000000 110001011 -9
00100111 27 00110000 SSR .DO. N — 78
00101000 28 00010011 LDC .AL. N ¥ [ddebug |At SA1 breess L] 54
00101001 29 11110100 ## 1111 0100 EEEIDIH] J0DNGO0) 3
00101010 2A 00110101 GSR .DL. N CACHE Instruction Register- IR Status Register - SR

00101011 28 11101001 MOV .AQ. .DL. N RN 11010110 0100000

00101100 2C 00101100 PoOP .DO. 11110100 Instruction Counter - I1C TOXYNZVC

00101101 20 00101000 PSH .DO. 00110101 st [30] 00110000 FLAG

00101110 2E 01011010 DEC .AO. N C AT hex Stack Painter - SP _
00101111 2F 11010110 mov .pl. [AD] 00101100 Startadr. 00000000 - 5T 11110000 Windows (CRLF
00110000 30 10100001 SuB .DO. .DI.

00110001 31 00LOLO0O PSH .DO. g%iggg €5 0000000001010010 . :
00110010 32 11100110 MOV .Dl. .AO. - 11010110 | 2ssembler /programming program | data: [Quicksort recursivel
00110011 33 00110001 SSR .DL. 0100001 o P it dss store load
00110100 34 00110100 GSR .DO. 00101000 | ASSEMBLER-COMMAND &

00110101 35 10100001 Sue .DO. .D1. 11100110 | Adr OpCode Mnemanic Op. 1 Op. 2 shift
00110110 36 00101101 PoP .D1. o5iio001

00110111 37 01100001 AND .DO. .DL. 00110100 Flags comment to the command
00111000 38 00001001 JIN .+A. 10100001 | paTa load lower value

00111001 39 00010011 LDC .Al. 101101 | Adr binary ANSI PUS—

00111010 3A 00001100 ## 0000 1100 ot

00111011 38 00110101 GSR .D1. |'\"."hentheprcgramruns. machine instructions surrounding the current instruction arelcac\ecl.i
AT ST |

The background color can be changed in the INL.TXT file in the folder. If the file is missing, the default applies.

delete RAM/Flags

]

delete Flags

X

CACHE

CAUTION!
Delete the entire RAM, the flag column and the comments after confirmation prompt.
cleanup delete Flags [X] CACHE [J
CAUTION!
Delete the column of the last set flags without confirmation prompt.
assembler ’ prome
N{rjrgnemonics program | data: |E1u'icksor‘t recur'S'ive| program name
cMp dr. from to | from t0 ['name of the program to save or after loading:
YOSystem | gmﬂ GA Display _Output 1/0-Protocal [] 18X |:| |:| * Quicksort recursive *
Input: Alpue Output: ANSI
DIV . .
00110001 h3PSA operands display MGA-Displa
POA . .
fle [inputhcdISR |in - Out example with click areas
RET & « IR . . .
Processor HC68(JIN | CPU - Central Processing Unit T, (numeric input here with keyboard)
Data register [J1Z register C+A.
D0 L SDO iy . D0.
00000000 000 b 2 b 201 :
= ﬁjp _, Athmeic Log }z 'ﬁf' stackpointer,keyboard byte,
oooooooo (947 pooo pxel row, MGA-RAM
000000101 5P, L11IUULL F3 UUUUUUUU U nuu
pap 110010000
Adressregister | SSR [po] 11110100 F4 00000000 O h00 <-5P
d 000000000 [p1]
AQ GSR SA0 | 11110101 F5 00000000 0 hoo
00000000 [BTS OO0 110010101 [A0]
uN [a1l] 11110110 F6 00110001 1 h31 ->Ta
Al SHL SA1 bitwise [] 0000 11110111 F7 00000000 O h00 =Pix
00000000 |SHR B000 o 11111000 F8 00100000 32 h20 rowl
InstruqROR |ter- IR Status Register - SR 0011 11111001 F9 01100111 103 h67 row2
ghg 000 00000000 8{8? 11111010 FA 00100000 32 h20 row3
Instrupec pter - 1C TOXYNZVC 0110 11111011 FB 00100111 39 h27 rowd
NoT PO00 FLAG 0111 11111100 FC 00100000 32 h20 rows
AND Stack Painter - SP 1000 11111101 FD 00000010 2 ho2 rowe
StartalOR 000 - ST 11110101
e a0p s 11111110 FE 11100111 -25 he7 row’
U8 Booooooorizoois i%%} 11111111 FF 00000010 2 ho2 rowd .,
assombler /rour{ 0D program | data ol . : =
> S0 Startady. omto | fomto e — 1l The MGA bit pattern is clearly visible.
adress ASSEMBLER-COcpy T S| [« s
Adr Op Code NSTP Op. 1 Op. 2 shift 4 .
op code gy oo11110 [TT] - [-A | v mnemonics
fl ags Flags 1 comment to the command 91 Mnemanic T Op.1 Op.2 |:
| event loop refurn | = L
TR ssembler, select or ent i ; “"i
Adl' biﬂﬂl’v 1\ ANS' dala comment '—{ assembler, select or enter command mnemonic
data 95 00100000 . 32 representation digit 1 with = sign | comments to RAM navigation
hex 20 AN
List of assembler commands assembler commands, - <
IMP RG IC <- Reg xx JuMP v RAM - Adr. back

documentation of simulation

list with explanation in short

processor HC680

page 2 of 6

comments

command

I—l¢

comment to the command

I'(Enter a comment to the command - even longer than input field, will be visible in the tooltip.

data data comment

1 2

—| Enter a comment to the constant - even longer than input field, will be visible in the tooltip.

The complete list of assembler commands with explanation in short form.

1/0-Protocol

>In Qut=

€

€
-128

-128
h&o

h&0
>1000 0000,
1000 0000=

input - output
protocol

In- and Output protocol
commands NP and OUT - display of values

interpretation according to 10 bits in the Status Register

00 keyboard character

01 decimal numbers -128 ... 127

10 hexadecimal numbers two digits xx

11 binary numbers 8 bit (over both columns!)

>Input.
Output=
r—
... visibility
{O-Protocal]

=In Out=

| Visibility of the input and cutput protocol, i
r—

...cl

ear protocol

I/0-Prot. delete E

L
Delete input and output protocel without asking. h

r

Mnem OF QP - Meaning Command/Addressing -

NOP No OPeration

CMP CoMPare DO, D1

SWD SwWap DO, D1

S SWap Memory Adr(D0), Adr{D1)

MUL MULtiplication DO <- DO*DL

DIV DIVision DO <- DOYD1 Rest SDO

PsA Push a11 Stack <- A,D,SR Reg.
POA POp A11 SR,D,A reg. «- Stack NZVC
JSR Jump SubR. S5<-IC+1,IC<-TC+A1/TCa-AH+AL+ST
JIN +A M=l: IC =- IC + Al Jump I Megative
JIZ +A Z=1: IC <- IC + Al Jump If Zero
IMP +A IC <- IC + Al JuMP
RET RETturn subroutine IC <-Stack -
LDC Rg LoaD Constant reg xx <- next Byte #& MNZ..
CCCC CCCC ## Constant Byte -
JIN IA N=1: IC <- AD +Al +5T Jump If Negative
JIZ TA Z=1: IC <- AD +A1l +5T Jump If Zero A
IMP TA IC «<- AD +Al +5T JuMP A
JIN RG M=1l: IC =- Reg xx Jump If Megative .
1IZ RG Z=1: IC <- Reg xx Jump IT Zero
IMP RG IC <- Reg xx JuMP
INFP RG reg xx <- INPut NZ..
ouT RG OUTput <= reg xXx A
PSH RG PusH Stack - reg xx MNZ. .
POP RG POP reg xx <- Stack NZ..
SSR RG Set Shadow Register reg Wx —» SNx MNZ..
GSR RG Get Shadow Register reg xx <- Sxx MNZ..
BTS RG BitTest reg xx with Shadow register MZ. .
SWN RG SwWap Mibble reg xx MNZ. .
SHL RG SHift Left reg xXx NZ.C
SHR RG SHift Right reg xx Z.C
ROL RG ROtate Left reg xx MNZ.C
ROR RG ROtate Right reg xx MZ.C
CLR RG CLear Register reg xx <- 0 .
INC RG INCrement reg ®x NZVC
DEC RG DECrement reg xx NZVC
MNOT RG Reg xx «<- NOT reg xx (hitwise) MNZ. .
AND RG RG Reg vy <- reg yy AND reg xx NZ. .
OR RG RG Reg vv <- reg vy OR reg xx NZ. .
ADD RG RG Reg vy =- reg vy + reg xx NZVC
ADD RG [RG] Reg vy =- reg vy + Adr(reg xx) NZVC
SUBE RG RG Reg vy <- reg yy - reg xx NZVC
SUE RG [RG] Reg vy =- reg vy - Adr(reg xx) MNZVIC
MOV[RG] RG MOVe Adrireg wy) =- reg xx NZ..
MOV RG [RG] MOVe reg vy <- Adrireg xx) MNZ..
MOV RG RG MOVe reg vy <= reg xx NZ. .
MOV RG SR MOVe reg vy <= SR MNZ..
MOV RG SP MOVe reg vy = 5P NZ. .
MOV SR RG MOVe SR <= reg xx NZ..
MOV 5P RG MOVe SP <- reg xx NZ..
MOV SR CC MOVe SR <= CC.. (2t IO
MOV RG IA MOVe reg xx - Adr (AD+AL+ST) MZ. .
MOV IA RG MOVe Adr(AD+A1+5T) <- reg xx NZ..
LOD RG LOad Data reg xx «<- Adr({h80+A1+5T) MNZ..
STO (I0) STOre Tile «<- Adr(h80+A1+ST) DO byte /D1 .Z..
RCL (IO) ReCallL Adr({hB0+A1+5T)<- file /Ol read DO .ZV.
CPY CoPY Adr(Al)<-Adr(AD) DO byte wia D1 JZV.
STP StoP P. stop, flags from pre-command VWY
Mnem OF OF - Meaning Command/Addressing - FLAG ~

assembler command MUL
Arithmetic Lagic Unit

000000000 00000100 A,
111111100111111005

000000 X
11100 100000010

bitwise ASRECO

i3 Status Register
00000001

The 9-bit ALU at work.

View the individual bits at clock speed.

Arithmetic Logic Unit

bitwise

1 Status Re
0100

IOXY|

Stack P
Booth multiplication
(bitwise in the ALU with additional temporary registers)

111110100
111111101
111000
10001

5|

Display the calculation process in the ALU bitwise,

During the bitwise representation in the ALL:
* no running keyboard input

no mouse handling

no stopping possible with start button

*

*

--- multiplication according te Booth ---

Register DO is termporarily stored in terporary ALU register A (for addition).
The two's complement -D0 is formed and stored in the temporary register 5.
The 16-bit result is calculated step by step in the bottom line. For this purpose,

| IOXYEEXE the left byte is initialized with 0 and D1 is stored on the right and the auxiliary bit x is set to 0 next to it.
Stack Pointer { Sequence control takes place after the last two bits of the result line (with auxiliary bit x):
ST 11110101
»» The result line is shifted 1 bit to the right, the auxiliary bit is dropped out,
0010000100 on the left, the bit identical to the bit shifted away is added as a sign extension.
program | data 00, 11 . only >>

atadr. fromto [fom| o7 .q9 5> DO’is added, then >>

hex 10 sub >> -DDisadded, then >
Op. 1 Op. 2

ARSI

documentation of simulation

(with sign expansion)

The right byte (low byte) is brought to DO,

The left byte of the last line is copied to the top line as a subtotal.

4] Then check for displayability in the range -128 ... 127 and set the flags.

processor HC680

After 8 steps, the 16bit result (without auxiliary bit x) is obtained in the lower double register.,

page 3 of 6

Division bitwise in the ALU with additional temporary register - only Windows variant.
assembler command DIV

u
0

--- integer division with remainder ---

.
Arithmetic Logic L'I]nit ;tog

00000000 5
000111 ;
000001

The signs of the dividend and divisor are stored in temporary ALU memory bits (Vz).

The two's complement is formed from the divisor D1 (temporary ALU registers: N negative, P positive).
If the dividend in DO is negative, its two's complement is formed first,

The division of the positive operands is realized with ALU control bits via the ALU shift registers 5, D.
For this purpose, the positive dividend in the ALU is moved 'fittingly' over the positive divisor.

This is achieved by bit comparison of the bits of the operands standing on top of each other.

Status| The difference is then formed by adding the negative devisor.

0f The relevant shifts and additions generate the quotient in the temporary solution register L.

I Based on the stored signs, the sign may now be changed (solution, remainder).

bitwis

The control bits are shown in the upper right corner of the ALU in the following order:
- Stai f (first loop) t (two) a (add)
———— f: First total pass in bit comparison of dividend and divisor (f = 1).
Jooiliiio The dividend is mowved to the right into the auxiliary register D of the dividend if required.
progra In thg shifting pointer registgr 5, a 1is inserted from the left.

rtadr. ﬁ.om t In the first subsequence the bits are compared from the left (symbel |),

hex possibly shifted (symbols < =). If this means that the subsequent bits
in the second subprocess must also be checked to determine the size (symbol:), t = 1 is set.
Jp- 1 a: Solution bit 1 is appended to the quotient, then addition of the negative devisor (current remainder),
a bit from the auxiliary register D of the dividend is shifted after (symbol <-).
This is only done if there is still a 1in the slider pointer register 5 above it on the left.

Then, depending on the sign bit in Vz, a sign reversal may occcur,
ANS| | The quotient is brought to DO, the remainder to SD0 (sign remainder like sign dividend).

data, Jut | output.hcx

store in file E Output to data file with the STO command.

File structure: Text file, one value per line,
Content of the file - interpretation according to [O bits in the Status Register

web variant:
i rithm] 00 keyboard character

to clipboard = 01 decimal numbers -128 ... 127

10 hexadecimal numbers two digits xx

11 binary numbers 8 bit

—| If no data was written, the £ flag is set.
If no file name is entered, the file selection is displayed.
data, read in from file
file | inout hex In__ - Qut | outout.hcx |

Data file to read in with the RCL command.

Excerpts:

Arithmetic Logic Unit

Sg [D1

0000000001
011111001011110011 1y
000000000 00001101 p
111110011

AN T
Anthmetic Logic Unit 100
Sg [DO \D1 | 00000000 5
0001100101 00000000 D
0000001101 11110011 |
00001101 p
00000000 |

) . ST fia
Arithmetic Logic Unit 1311

Sg [add N 110000005
0000011001 01000000 D
0111110011 11110011y

100110 00001101 p
01100 60000001 |

bitwise

o T
Arthmetic Logic Unit 100

Sg el 110000005
0000011000 01000000 D
1000010101 11101011 1y
00010101 p
00000000 |

bitwise
N i 1
Anthmetic Logic Unit 111
Sg ~ =-/10000000 5

0000011000 100000000
0000001101 11110011
00001101 p
(0000001 |

bitwise

L Y
Arithmetic Logic Unit oo
Sg [Qu (-) |00000000 S
0000000001 00000000 0
1111111011 11101011 1y
0000110 00010101 p

‘ocess
Data rg File structure: Text file, one value per line, 111100 60000100 |
10 Content of the file - interpretation according to 10 bits in the Status Register bitwise
0004
00 keyboard character
il 01 decimal numbers -128 ... 127
0000 10 hexadecimal numbers two digits xx
11 binary numbers & bit
Adres)
i} If no data was read, the 7 flag is set.
000Q If there is too much data in the file, the program terminates at the end of RAM and sets the V flag.
It is also set by values that do not respect the range.
A If no file name is entered, the file selection is displayed.
input (continuously a keyboard character or with command INP) _
" Input: ANSI Output: ANSI N otn outs
LR 128 €
binary code
10000000 _h80 | OK
. I: Continuous input of a keyboard character, Input possible with Alt xxxx.
input ... file [INg 1, input takes place to each clock also without clicking into the input field!
EpEreETs The binary AMSI code is stored at address hF6.
42 clock: Data reg With the command INP alternatively also input of a decimal number in the range -128 ... 127
E 1.0 Hz DUDU‘UDD or enter a hexadecimal number in the form hxx or Hxx or Sxoc
= Hexadecimal digits 0.9, A.F or a.f - invalid digits are converted to 0.
5 Breakpoints | D1 For INP, the input must be acknowledged with OK,
p 00000 The input is then stored in the register and at address hF6
and displayed in the input/output log. The display there is according to the content
|_| aa of the 10 bits in the status register: 00 character, 01 decimal, 10 hexadecimnal, 11 binary.
documentation of simulation processor HC680 page 4 of 6

register content (binary, plus decimal, hexadecimal in tooltip - only Windows variant)

A111111101 Instruction Counter (at single step -also at breakpoint- manually resettable)
— Instruction Counter - IC
sat 00000101 Instruction Counter - [C TOXYNZVC
(2= s ————— et [05] 00000101 FLAG |
Startadr. [][} Resetting the instruction counter/ instruction address (hexadecimal).
base address Stack Pointer Start address
Bt X
Stack Pointer - SP Startadr. from to | from to store loai
00000000 oihex | [[[[1] |
S — hexadecimal start address HC680 Binary code. i
200 adr 0= h00 (Basis after start 245 = hF3) }

takt ~ clock: Data register Shadow register
1.0 Hz |DO 00 SDO

--- frequency selection ---

Breakpoints
Breakpoints | D1

Single step (above), then clock frequency from 0.1 te 2535Hz, then unbraked. l__Fl 00000000 0000C
- The frequency can also be changed during the program run. :‘ Adressregister

In the single step the breakpoints are editable. ﬁl Al 10
If the frequency is higher, click quickly one after the other to reach stop - - . T
or to change 'bitwise'. Possibly reduce the frequency considerably beforehand. areakgomt 3| I‘Ec'l—:failt P?M :—D‘I'_\'t 127)
A stop can always be reached by clicking on the slider in the RAM scroll bar. Nziioicflir;:r; forf;;;;l:?s'—;;‘:p'

deg - from 10Hz nonlinear scale.

- Above 235Hz unbraked:
* No running keyboard input, no mouse handling - 'full’ speed.
* Mo detailed representations of the process.

cache - only Windows variant

00010001 11 00000000 NOP CACHE Instruction Register - IR Status Register - SR
00010010 12 00010011 LDC .Al. 01010011 11101001 01001000
00010011 13 01000111 ## 0100 0111 01010111 Instruction Counter - IC TOXYNZVC
00010100 14 11101001 MmOV .AD. .DL. N 11111100 set [15 00010101 FLAG
00010101 15 10101000 sug .AO0. .DO. 11111111 hex Stack Pointer - SP
00010110 16 01011010 DEC .AOD. 00000000 Startadr. 00000000 - ST 11110011
00010111 17 00001001 JIN .+A.

00010011
00011000 18 00101000 PSH .DO. 01000111 il .
00011001 19 11101000 MOV .AD. .DO. . 11101001 | 2ssembler /programming program | data: |Quicksor
00011010 1A 01011010 DEC .AO. 10101000 Stﬂf‘taﬁf- from to | from to
00011011 1B 00101001 PSH .DI1. : ASSEMBI FR-COMMAND e : :
00011100 1C 0O0LL000L SSR .DL. | When the program runs, machine instructions surrounding the current instruction are loaded. |

debugging- only Windows variant
debug | A1 11 SA1 DuasenL
3] Write to debug file,

00000000 00000000
IC, binary code, assembler, 5R/flags, all registers, debug. txt |

SP with content, keyboard byte and MGA pixel line are recorded. Enter debug file name.) o
If no file name is entered, the file selection is displayed.

Can be switched on and off during the program run.

Mot considered for clock =235Hz, ""':? E_ NTION ---
The file is always overwritten with the header! (Even if debug is not selected),
At clock > 255Hz there is no entry in the file,

example in assembler "sum exceeded until 50" - stored as a text file

HC680 assembler ; sum exceeded until 5@
8e: ST ; Startadr.

Adr Mnm Op_ Op_ ; - comment -

g@: MOV .SR. .81. ;output decimal

@1: LOD .D1. ;1load target sum from h3@

B2: INC .Al. ;incrementing the address index register Al to load the next constant
83: LOD .A1l. ;load jump difference for IC relative jump in Al

84: PSH .D@. ;put initial value @ on the stack for cumulating

B85: INP .AB. ;-INPUT- data into address register - is possible!

@86: POP .D@. ;eet cumulated sum from stack

@7: ADD .D@. .A@. ;sum with input value

B8: PSH .D@. ;put sum back on stack

89: CMP jcompare sum with target sum (DB-D1 without result)

BA: JIN .+A. ;IC-relative jump to input, if target sum is not yet reached
@B: OUT .De. 3 -OUTPUT -

ac: STP ;done!

8@: 56 h32 ;sum up to 5@

81: -5 hFB ;IC-relative destination address (five commands back)

When creating with a text editor, the colon, the dots before and after the operands and the semicolon can be omitted.

After Mnm and between the operands up to 4 spaces are allowed, before Mnm two.
Before the data up to five blanks are allowed for separation, thus right-justified notation is possible.

documentation of simulation processor HC680 page 5 of 6

load

<]

load, store, shift assembler file (Windows variant: store to clipboard)

Load an HCG80 assembly file into the working memaory.

Faulty assembler commands are interpreted as NOP,

In the data area from address h80 only the left value or character is read.

7 For a better overview, the data can be set right-justified.

{ The colon after the data address can be omitted, up to five spaces are allowed.
The 2nd column (uniform hexadecimal) is optional. It will be recalculated.

1 From column 21 the comment is read in, the semicolon in front of it is optional.
Please note the start address stored in the file.

11| | shift

Shift the assemnbly instructions and/or the data in RAM,
ol
Specify the offset in decimal or hexadecimal hxx with sign.
It is shifted from the entered start to the end addresses.
The existing contents are overwritten, free lines are set to zero.
The RAM section is stored as asm_tmp.tt.
The complete RAM is saved before under asm_bak.txt.

-23 ||| /shit

| The colen after the command address is optional, one or two spaces are sufficient for it.
Also, the dots around the operands are optional, then put one to four separator spaces.

store load

=

Store a HCG20 assembler file,

o th| The start address is stored.
From start address (min. 00) to end address (max. 7F) the program,
the data from {min. 80) to (max. FF) are stored.

ient| If no values are entered (the part) is not stored,

-h17 | shift of program and/or data in memeory, decimal or hexadecimal (-Jhaxx resp. Hix, Sxx

1 HRE PR A .

address ranges of the assembler file

program | data® [test program |
dr. from to | from to Siore load
rox 00 6 G0 sF °%°, @

1 | hexadecimal start address of the binary code to store/move in the assemnbly file.

program | data® [test program |

Ir. fromto | from to o load

= =

1 d hexadecimal end address program - for storage/movement
| data: [test program |
| from to store load
sl e, 2

3 hexadecimal data address start - for storage/moving

| data: [test program |
| from to

[0 er!
h
2

store load

exadecimal data address end - for storage/movemnent

execute machine program / binary code

slower is not possible

click - Intermediate stops possible bitwise in the ALU E{CESU od full speed
HCB80 HC680 HCB80 HCE80 mary code HC680
binary code binary code binary code binary code @ X sTOP binary code
Step ...
@ @ @ . bit ... e"
execute halt halt again ~ clock: Takt = 255
_~ clock: _~ clock: _~ clock: ~ clock: - Step Hz _~ clock:
I 1.0 Hz 0.2 Hz I 0.2 Hz 0.2 Hz - [goon Z SpeedHz
5 3 3 - continue please =
ITHUL. Fath bl
at INPut break off? | ~eqg p donel!
HCG30 binary code
binary code Eigssucode
© x]sToP file | input hcx o
input ... run further| Cancel program immediately with x, @
otherwise click yellow circle.
' stopped

_~ clock:

- 1.0 Hz
documentation of simulation processor HC680 page 6 of 6

