
documentation of simulation processor HC680 page 1 of 6

Processor HC680 fictive

documentation of simulation
pictures Windows variant

The simulation includes the structure and functionality of the processor and important assemblies
of the system. Thereby both the execution of the machine program and its creation by the assemb-
ler are realized in a simulation window. Assembler programs can be stored and loaded.

data of the system
processor: HC 680 fictive
processing width: 8 bit data and addresses
command length: 1 byte
address range: 256 byte
clock pulse: Clock: single step, 0.1Hz to 255Hz, unbraked
registers: 4 general registers with shadow register, start address (ST)

instruction register (IR), instruction counter (IC), status register (SR),
stack pointer (SP)

flags: Negative (N), Zero (Z), oVerflow (V), Carry (C) and I/O Bits
arithmetic unit: Arithmetic Logic Unit (ALU), 8+1 bit sign extension for addition,

multiplication by Booth, division with remainder, ALU bitwise representable
numberspace: decimal from -128 to 127
graphic: 8x8 maxi pixel display, 8 byte shared memory
in and output: by I/O bits: keyboard characters, decimal, hexadecimal, - output also binary
files: by I/O bits: keyboard characters, decimal, hexadecimal, binary
breakpoints: 3 - changeable during program execution
debug: any section, into selectable file
assembler: 40 mnemonics, 57 commands by addressing modes - see manual

The user assistance is realized via extensive, tooltips (can be switched off in Windows variant).

documentation of simulation processor HC680 page 2 of 6

Overall view, example recursive quicksort of the file (german Datei) input.hcx, output to output.hcx.

The background color can be changed in the INI.TXT file in the folder. If the file is missing, the default applies.

cleanup

assembler
mnemonics program name

operands display
example with click areas
(numeric input here with keyboard)

stackpointer,keyboard byte,
 pxel row, MGA-RAM

The MGA bit pattern is clearly visible.
adress
op code mnemonics
flags

data comments to RAM navigation
assembler commands,
list with explanation in short

documentation of simulation processor HC680 page 3 of 6

comments command

data

The complete list of assembler commands with explanation in short form.

input - output
protocol

... visibility

... clear protocol

The 9-bit ALU at work.
View the individual bits at clock speed.

assembler command MUL

Booth multiplication
(bitwise in the ALU with additional temporary registers)

documentation of simulation processor HC680 page 4 of 6

Division bitwise in the ALU with additional temporary register - only Windows variant. Excerpts:
assembler command DIV

data,
store in file

web variant:
to clipboard

data, read in from file

input (continuously a keyboard character or with command INP)

documentation of simulation processor HC680 page 5 of 6

register content (binary, plus decimal, hexadecimal in tooltip - only Windows variant)
Instruction Counter (at single step -also at breakpoint- manually resettable)

base address Stack Pointer Start address

takt
Breakpoints

cache - only Windows variant

debugging- only Windows variant

example in assembler "sum exceeded until 50" - stored as a text file

When creating with a text editor, the colon, the dots before and after the operands and the semicolon can be omitted.
After Mnm and between the operands up to 4 spaces are allowed, before Mnm two.
Before the data up to five blanks are allowed for separation, thus right-justified notation is possible.

documentation of simulation processor HC680 page 6 of 6

load, store, shift assembler file (Windows variant: store to clipboard)

address ranges of the assembler file

execute machine program / binary code
slower is not possible

click - Intermediate stops possible bitwise in the ALU full speed

continue please

at INPut break off? done!

