
HC680 manual cpusimulation page 1 of 5

HC680 PROGRAMMER'S REFERENCE MANUAL programming guide

mnemonic
assembler machine instruction effect /meaning
 ope- opcode/binary code - addressing mode -
mnem. rands FLAG g b yy xx (g group, b bit, yy,xx t.p. opera./reg.)
---- ------ ---- --- - -- -- ----------------------------
NOP 000 0 00 00 No OPeration
CMP NZVC 000 0 00 01 CoMPare D0, D1 (D0-D1)
SWD 000 0 00 10 SWap D0, D1
SWM 000 0 00 11 SWap Memory Adr(D0), Adr(D1)

arithmetic-/ stack commands ------------
MUL NZVC 000 0 01 00 MULtiplication D0 <- D0*D1
DIV NZVC 000 0 01 01 DIVision D0 <- D0\D1 Rest SD0
PSA 000 0 01 10 PuSh All Stack <- A,D,SR reg.
POA NZVC 000 0 01 11 POp All SR,D,A reg. <- Stack

jump commands/ subroutine --- IC relative ---
JSR 000 0 10 00 Jump SubRoutine Stack<-IC+1, A0=0: IC<-IC+A1 else IC<-A0+A1+ST
JIN +A 000 0 10 01 N=1: IC <- IC +A1 Jump If Negative
JIZ +A 000 0 10 10 Z=1: IC <- IC +A1 Jump If Zero
JMP +A 000 0 10 11 IC <- IC +A1 JuMP

 ---- ----- Adr. with Offset -----
RET 000 0 11 00 RETturn subroutine IC <-stack
JIN IA 000 0 11 01 N=1: IC <- A0 +A1 +ST Jump If Negative
JIZ IA 000 0 11 10 Z=1: IC <- A0 +A1 +ST Jump If Zero
JMP IA 000 0 11 11 IC <- A0 +A1 +ST JuMP

 load constant --- register direct ---
LDC Rg NZ 000 1 00 xx LoaD Constant reg xx <- ## next byte
CCCC CCCC ## Constant byte

---- register direct ------------
JIN RG 000 1 01 xx N=1: IC <- reg xx Jump If Negative
JIZ RG 000 1 10 xx Z=1: IC <- reg xx Jump If Zero
JMP RG 000 1 11 xx IC <- reg xx JuMP

in- output / stack commands -- reg. direct --
INP RG (IO) NZ 001 0 00 xx reg xx <- INPut
OUT RG (IO) 001 0 01 xx OUTput <- reg xx
PSH RG NZ 001 0 10 xx PuSH Stack <- reg xx
POP RG NZ 001 0 11 xx POP reg xx <- Stack

shadow reg./ bit test/nibble -- Reg. direkt --
SSR RG NZ 001 1 00 xx Set Shadow Reg xx -> Sxx
GSR RG NZ 001 1 01 xx Get Shadow Reg xx <- Sxx
BTS RG Z 001 1 10 xx BitTest reg xx with Shadow r.
SWN RG NZ 001 1 11 xx SWap Nibble reg xx

arithmet.-log. commands --- register direct ---
SHL RG NZ C 010 0 00 xx SHift Left reg xx
SHR RG Z C 010 0 01 xx SHift Right reg xx
ROL RG NZ C 010 0 10 xx ROtate Left reg xx
ROR RG NZ C 010 0 11 xx ROtate Right reg xx

CLR RG Z 010 1 00 xx CLear Register reg xx <- 0
INC RG NZVC 010 1 01 xx INCrement reg xx
DEC RG NZVC 010 1 10 xx DECrement reg xx
NOT RG NZ 010 1 11 xx reg xx <- NOT reg xx

 --- reg.reg./*1234)transport commands with SR/ SP
AND RG RG NZ 011 0 yy xx reg yy <- reg yy AND reg xx *1)
OR RG RG NZ 011 1 yy xx reg yy <- reg yy OR reg xx *2)

------ --- register direct and indirect --- |*12345) with xx≠yy,
ADD RG RG NZVC 100 0 yy xx reg yy <- reg yy + reg xx *3) | at xx=yy code with SR/SP:
ADD RG [RG] NZVC 100 1 yy xx reg yy <- reg yy + Adr(reg xx) |*1) MOV RG SR NZ reg yy <- SR

------ |*2) MOV RG SP NZ reg yy <- SP
SUB RG RG NZVC 101 0 yy xx reg yy <- reg yy - reg xx *4) |*3) MOV SR RG NZ SR <- reg xx
SUB RG [RG] NZVC 101 1 yy xx reg yy <- reg yy - Adr(reg xx) |*4) MOV SP RG NZ SP <- reg xx

--- transport commands --- register indirect ----- |*5) MOV SR CC SR <- CC..
MOV [RG] RG NZ 110 0 yy xx MOVe Adr(reg yy) <- reg xx | CC sets data type IO in SR
MOV RG [RG] NZ 110 1 yy xx MOVe reg yy <- Adr(reg xx)

------ --- register direct ---
MOV RG RG NZ 111 0 yy xx MOVe reg yy <- reg xx *5)

 ---- Reg. --- register indirect ---
MOV RG IA NZ 111 1 00 xx MOVe reg xx <- Adr(A0+A1+ST)
MOV IA RG NZ 111 1 01 xx MOVe Adr(A0+A1+ST)<- reg xx
LOD RG NZ 111 1 10 xx LOad Data reg xx <- Adr(h80+A1+ST)

 - store commands /copy command /stop ------
STO (IO) Z 111 1 11 00 STOre file <- Adr(h80+A1+ST) D0 byte, via D1 (Data: IO)
RCL (IO) ZV 111 1 11 01 ReCalL Adr(h80+A1+ST) <- file via D1 (Data: IO) /D0 byte readed
CPY ZV 111 1 11 10 CoPY Adr(A1)<-Adr(A0) D0 byte via D1
STP (pre-cmd) 111 1 11 11 StoP STop Program, flags from pre-command

 If the IC runs under h00/over hFF it is cyclically set into the valid range, as well as the operands adr(h80/A0 +A1+ST).
 No specification for FLAG: Flag is set to 0. Data IO: 00 character, 01 decimal, 10 hexadecimal, 11 binary (one value/row).

register (0 to 3 generic. reg.)
No name xx bin type
0 D0 00 data register
1 D1 01 data register
2 A0 10 adr.-base reg.
3 A1 11 adr.-index reg.
SD0/SD1 shadow reg. to D0/D1
SA0/SA1 shadow reg. to A0/A1
 IR Instruction Register
 IC Instruction Counter
 SR Status Register
 SP Stack Pointer
 ST STart adress

addressing mode in
assembler

* Adr./register fix
value in/into register:
* register direct
reg xx, reg yy .Rg.

value in/into RAM(Adr.in Reg.)
* register indirect
Adr(reg xx), [Rg]

 yy

Adr. with offset
* IC relative
Adr.: IC + A1 .+A.

* Index Adress
Adr.: A0 + A1 + ST .IA.

* at LOD/STO/RCL
Adr.: h80 + A1 + ST

 A1 as index with sign

Status Register SR
IOXYNZVC

In/ IO=00 Character
Out =01 decimal
 =10 hexadecimal
 =11 binary
free available XY
Flags N Negative
 Z Zero
 V oVerflow
 C Carry

A1 is signed
as offset +A, IA

RAM adresses:
h00 standard start address
h80 base adr. data (down)
hF5 base adr. stack (up)
hF6 address keyboard input
hF7 adresss display pixel
hF8 - hFF MGA display 8x8

HC680 manual cpusimulation page 2 of 5

explanation and detailsexplanation and detailsexplanation and details

 ope- opcode/bin.code meaning /explanation
mnem. rands FLAG g b yy xx (g group, b bit, yy,xx t.p. opera./reg.)

NZVC
NOP 000 0 00 00 No OPeration
No operation is executed, flags all 0, the instruction counter IC is incremented by 1.

CMP NZVC 000 0 00 01 CoMPare D0, D1 (D0-D1)
Compares the data registers D0 and D1 by difference D0-D1 and sets the corresponding flags.
The registers remain unchanged, the difference is discarded.

SWD 000 0 00 10 SWap D0, D1
Swaps the contents of the two data registers D0 and D1.

SWM 000 0 00 11 SWap Memory Adr(D0), Adr(D1)
Swaps the contents of the memory cells whose addresses are in registers D0, D1.

MUL NZVC 000 0 01 00 MULtiplication D0 <- D0*D1
Multiplies D0*D1 by Booth, result in D0. Also in case of overflow the low-value byte is returned.

DIV NZVC 000 0 01 01 DIVision D0 <- D0\D1 Remainder SD0
Integer division D0\D1, result in D0, remainder in SD0. Sign remainder = sign dividend.

PSA 000 0 01 10 PuSh All Stack <- A,D,SR reg.
Pushes registers A1, A0, D1, D0, SR on the stack in this order (SR on top) and decreases the SP by 5.

POA NZVC 000 0 01 11 POp All SR,D,A reg. <- Stack
Sets the registers in the order SR, D0, D1, A0, A1 with the values from the stack and increases the SP by 5.
The flags thus result from the corresponding bits on the stack.

JSR 000 0 10 00 Jump SubRoutine Stack<-IC+1, A0=0: IC<-IC+A1 sonst IC<-A0+A1+ST
Jump to the subroutine. Places the return addressIC+1 on the stack.
If A0=0, A1 is added to the IC and entered into the instruction counter where it is processed further. Otherwise the new
IC is determined by the index address A0+A1+ST. A1 is signed.

JIN +A 000 0 10 01 N=1: IC <- IC +A1 Jump If Negative
Jumps A1 bytes relative to the instruction counter state when the N flag is set, where A1 is signed.

JIZ +A 000 0 10 10 Z=1: IC <- IC +A1 Jump If Zero
Jumps A1 bytes relative to the instruction counter state when the Z flag is set, where A1 is signed.

JMP +A 000 0 10 11 IC <- IC +A1 JuMP
Jumps A1 bytes relative to the instruction counter state, where A1 is signed.
RET 000 0 11 00 RETturn subroutine IC <-Stack
Return from the subroutine. Fetches the address of the instruction counter from the stack to continue working at the
instruction after JSR if the stack is managed correctly.

JIN IA 000 0 11 01 N=1: IC <- A0 +A1 +ST Jump If Negative
Jumps to the calculated index address A0 +A1 +ST when the N flag is set, where A1 is signed.

JIZ IA 000 0 11 10 Z=1: IC <- A0 +A1 +ST Jump If Zero
Jumps to the calculated index address A0 +A1 +ST when the Z flag is set, where A1 is signed.

JMP IA 000 0 11 11 IC <- A0 +A1 +ST JuMP
Jumps to the calculated index address A0 +A1 +ST, where A1 is signed.

LDC Rg NZ 000 1 00 xx LoaD Constant reg xx <- ## next byte
Loads the constant stored in the byte after the LDC instruction with the constant instruction ## into the register. The
instruction counter is incremented by 2 when the instruction is executed, an wrong entered instruction is thus skipped.

CCCC CCCC ## Constant byte
Constant definition 1byte (left and right nibble) for the LDC command. Must immediately follow this command.
If the definition is not after LDC, the byte is interpreted as a machine instruction and executed accordingly.

The FLAG's NZVC not specified in the
commands are always set to 0.
The higher-value Nibble IOXY of the SR
is not affected.

HC680 manual cpusimulation page 3 of 5

JIN RG 000 1 01 xx N=1: IC <- reg xx Jump If Negative
Jumps to the address in the register when the N flag is set.

JIZ RG 000 1 10 xx Z=1: IC <- reg xx Jump If Zero
Jumps to the address in the register when the Z flag is set.

JMP RG 000 1 11 xx IC <- reg xx JuMP
Jumps to the address in the register.

INP RG (IO) NZ 001 0 00 xx reg xx <- INPut
The program stops and waits for the input of a keyboard character, a decimal number -128 ... 127 or a hexadecimal
number. The input is displayed in binary and alternatively in the forms not entered. The binary value is filed in the
register and stored in the RAM in the keyboard byte hF6. The input appears in the input/output protocol in the form
defined by the IO bits of the status register.

OUT RG (IO) 001 0 01 xx OUTput <- reg xx
The register contain is represented in the input/output system in binary, hexadecimal, decimal and as characters and is
noted in the input/output protocol in the form defined by the IO bits of the status register.

PSH RG NZ 001 0 10 xx PuSH Stack <- reg xx
Puts the register on top of the stack and decreases the SP by 1.

POP RG NZ 001 0 11 xx POP reg xx <- Stack
Sets the register to the value from the stack and increases the SP by 1.

SSR RG NZ 001 1 00 xx Set Shadow Reg xx -> Sxx (SDx, SAx)
Sets the shadow register to the register to its value.

GSR RG NZ 001 1 01 xx Get Shadow Reg xx <- Sxx (SDx, SAx)
Sets the register to the value of its shadow register.

BTS RG Z 001 1 10 xx BitTest reg xx with Shadow register
Tests the corresponding bits of the register against the set bits in the shadow register. If all bits set in the shadow
register are also set in the register, i.e. the masked difference is 0, the Zero flag is set.
The N flag is set when the shadow register is negative but the register is positive.

SWN RG NZ 001 1 11 xx SWap Nibble reg xx
Swaps the left and right nibble in the register. Corresponds to the digit swap of the hexadecimal number.

SHL RG NZ C 010 0 00 xx SHift Left reg xx
Shifts the bits in the register one place to the left. The right bit becomes 0.
Corresponds to a multiplication by 2. The bit shifted out goes into the Carry flag.

SHR RG Z C 010 0 01 xx SHift Right reg xx
Shifts the bits in the register one place to the right. The left bit becomes 0.
Corresponds to integer division \2. The bit shifted out (corresponds to remainder) goes into the carry flag.

ROL RG NZ C 010 0 10 xx ROtate Left reg xx
Shifts the bits in the register one place to the left. The left bit is set to the right bit and also to the C flag.

ROR RG NZ C 010 0 11 xx ROtate Right reg xx
Shifts the bits in the register one place to the right. The right bit is placed in the left bit and also in the C flag.

CLR RG Z 010 1 00 xx CLear Register reg xx <- 0
Clears the register, i.e. sets all bits of the register to 0. The Z flag is thus always set.

INC RG NZVC 010 1 01 xx INCrement reg xx
Increases the register content by one.

DEC RG NZVC 010 1 10 xx DECrement reg xx
Decreases the register content by one.

NOT RG NZ 010 1 11 xx reg xx <- NOT reg xx
Negates the individual bits in the register. (If INC is executed afterwards, the sign of the decimal number is changed).

HC680 manual cpusimulation page 4 of 5

The commands AND/OR/ADD/SUB/MOV RG RG
do not exist for identical registers. With AND/OR the result would be identical to the
operand, with ADD it corresponds to the doubling, which is better covered by SHL. For
SUB, CLR is also more efficient. MOV makes no sense. The resulting free binary codes are
used for the MOV transport commands with the status register and the stack pointer and
the data type IO can be set.

AND RG RG NZ 011 0 yy xx reg yy <- reg yy AND reg xx (xx ≠ yy)
Operates a logical AND between the individual bits. Result is only 1 if both bits are 1, otherwise 0.

MOV RG SR NZ 011 0 yy yy reg yy <- SR
Moves/copies the contents of the status register to the register on the left.

OR RG RG NZ 011 1 yy xx reg yy <- reg yy OR reg xx (xx ≠ yy)
Operates a logical OR between the bits. Results in 0 only if both bits are 0, otherwise 1.

MOV RG SP NZ 011 1 yy yy reg yy <- SP
Moves/copies the contents of the stack pointer to the register on the left.

ADD RG RG NZVC 100 0 yy xx reg yy <- reg yy + reg xx (xx ≠ yy)
Adds the two registers and puts the result in the register on the left.

MOV SR RG NZ 100 0 xx xx SR <- reg xx
Moves/copies the content of the register on the right into the status register and thus sets the flags.

ADD RG [RG] NZVC 100 1 yy xx reg yy <- reg yy + Adr(reg xx)
Adds the left register with the byte whose address is in the right register. Result then in the left register.

SUB RG RG NZVC 101 0 yy xx reg yy <- reg yy - reg xx (xx ≠ yy)
Subtracts the right register from the left register and places the result in the leftregister.

MOV SP RG NZ 101 0 xx xx SP <- reg xx
Moves/copies the contents of the register on the right into the stack pointer, thereby resetting it new.

SUB RG [RG] NZVC 101 1 yy xx reg yy <- reg yy - Adr(reg xx)
Subtracts from the left register the byte whose address is in the right register. Result then in the left register.

MOV [RG] RG NZ 110 0 yy xx MOVe Adr(reg yy) <- reg xx
Moves/copies the content of the right register to the memory address in the left register.

MOV RG [RG] NZ 110 1 yy xx MOVe reg yy <- Adr(reg xx) *)
Moves/copies the content of the memory address in the right register to the left register.

MOV RG RG NZ 111 0 yy xx MOVe reg yy <- reg xx (xx ≠ yy)
Moves/copies the register on the right to the register on the left.

MOV SR CC 111 0 CC CC MOVe SR <- CC.. (CC=CC)
The constant bits CC are set in the left two bits of the status register. This defines the data type IO
for input and output: 00 character, 01 decimal, 10 hexadecimal, 11 binary

MOV RG IA NZ 111 1 00 xx MOVe reg xx <- Adr(A0+A1+ST)
Moves/copies the byte from the calculated index address A0+A1+ST into the register.
The address is determined cyclically at <0 or >255.

MOV IA RG NZ 111 1 01 xx MOVe Adr(A0+A1+ST)<- reg xx
Moves/copies the register value into RAM to the calculated index address A0+A1+ST.
The address is determined cyclically at <0 or >255.

LOD RG NZ 111 1 10 xx LOad Data reg xx <- Adr(h80+A1+ST)
Loads/copies the data byte from the calculated index address h80+A1+ST into the register.
Base address data is h80, the address is determined cyclically at <0 or >255, A1 with sign.

HC680 manual cpusimulation page 5 of 5

STO (IO) Z 111 1 11 00 STOre file <- Adr(h80+A1+ST) D0 Byte, via D1 (Data: IO)
Writes D0 byte (unsigned) from address h80+A1+ST into a text file.
The address is determined cyclically at <0 or >255.
The bytes are first brought to D1. One value is stored per line.
Depending on IO is written at 00 character, 01 decimal, 10 hexadecimal, 11 binary.
The Z flag is set if no data was written. The number of bytes actually written is then unsigned in D0, the last byte in D1.

RCL (IO) ZV 111 1 11 01 ReCalL Adr(h80+A1+ST) <- file via D1 (Data: IO) /D0 byte readed
Reads data from a text file into the RAM from address h80+A1+ST.
The address is determined cyclically at <0 or >255.
The bytes are first brought to D1. There must be one value per line.
Depending on IO, at 00 character, 01 decimal, 10 hexadecimal, 11 binary is assumed as type in the file.
The Z flag is set if no data was read. The V flag is set when there is more data in the file than can be stored to the end of
RAM. The number of bytes actually read is then written unsigned in D0 , the last byte in D1.

CPY ZV 111 1 11 10 CoPY Adr(A1)<-Adr(A0) D0 byte via D1
Copies D0 bytes (unsigned) from RAM address in A0 starting into the area from RAM address in A1.
The Z flag is set if no data has been copied.
The V flag is set if more data is to be copied than can be stored to the end of RAM.
The number of bytes actually copied is then written unsigned in D0 , the last byte in D1.

STP (pre-cmd) 111 1 11 11 StoP STop Program, flags from pre-command
Halts the program. The flags are taken over from the preceding command. This allows STP to be inserted at any point in
the program in addition to the breakpoints for test purposes.

